
Efficient Performance Optimization on Yarn-Based MapReduce Hadoop

Framework

Than Than Htay, Sabai Phyu

Thanthanhtay@ucsy.edu.mm, sabaiphyu72@gmail.com

Abstract

Apache Hadoop exposes 180+ configuration

parameters for all types of applications and clusters,

10-20% of which has a great impact on performance

and efficiency of the execution. The optimal

configuration settings for one application may not be

suitable for another one leading to poor system

resources utilization and long application completion

time. Further, optimizing many parameters is a time

consuming and a challenging job because

configuration parameters and search space are huge,

and users require good knowledge of Hadoop

framework. The issue is that the user should adjust at

least the important parameters, e.g. the number of

map tasks that can run in parallel for a given

application. This paper introduces the parameter

optimization algorithm to the key application level

parameter based on input data size and dynamic

resource capabilities at any given time for a given

application to improve execution time and resource

utilization with nearly zero optimization overhead.

1. Introduction

In this Big Data world, huge data storage and

faster processing is a big challenge because many

companies and organizations become interested in

processing and analyzing big data to extract valuable

information from big data. Hadoop is a desirable

solution to this challenge.

The Apache Hadoop framework has become a

popular, reliable, and scalable open-source

framework for storing and processing big data in a

distributed fashion on large clusters of low cost

commodity hardware by using HDFS and

MapReduce programming framework, respectively.

HDFS is highly fault-tolerant through replication

management like multiple copies on block of data on

different node and scalability and is designed to be

deployed on low cost hardware [5].

As Hadoop allows for the distributed

processing of large datasets across clusters of low

cost commodity machines with generality,

scalability, high availability and fast processing,

MapReduce has been widely accepted as the most

popular distributed processing framework for data-

intensive applications in different contexts like click-

log mining, web crawling, bioinformatics processing

and machine learning, image processing, and data

analysis, etc. A typical characteristic of these

applications is that they run repeatedly with different

input data sets [4]. YARN is an improved

architecture of Hadoop and separates resource

management from application logic [1]. The

generalization of resource management makes it

easier to deploy not only MapReduce applications,

but also other applications such as Spark and Tez [1].

Despite the improvement in architecture of Hadoop

in YARN and its wide adoption, performance

optimization for MapReduce applications remains

challenge because parameter tuning to optimize the

performance is largely manual and is done via

configuration parameters.

Hadoop exposes 180+ parameters providing

users the flexibility to customize them according to

their need. Some parameters have significant impact

on MapReduce performance and manual tuning is

time consuming and difficult because of the large

parameter space and the complex interactions among

the parameters [7]. Therefore, automatically tuning

the configuration parameters for a given MapReduce

Hadoop application on a given cluster to achieve

optimized performance is highly desirable [6]. There

are many recent research works for performance

optimization of MapReduce Applications by using

auto-tuning approaches: a cost-based approach,

popular and flexible Machine learning models and a

search-based [9, 6, 10]. The auto-tuning approaches

(primarily working with task level parameters) are

complex and require good enough tuning time to find

optimal settings with a certain amount of overhead

because they usually consider many task (map and

reduce) level parameters with their respective

possible values or range. Therefore, the major

challenge is to quickly identify the optimal parameter

configuration settings for a particular application on a

given cluster that effectively utilizes system

resources, ensures faster completion of applications.

23

mailto:Thanthanhtay@ucsy.edu.mm
mailto:Thanthanhtay@ucsy.edu.mm
mailto:sabaiphyu72@gmail.com
mailto:sabaiphyu72@gmail.com

To this end, it is desirable to select a small number of

parameters that significantly affect the performance

of MapReduce application. [1].

In this paper, we propose efficient

performance optimization approach on Yarn based

Hadoop in order to improve cluster resource

utilization leading to faster completion time of

MapReduce. We focuses on application level

parameters that make impact the cluster resource

utilization and overall application execution time on

map stage with nearly zero overhead of optimization

approach (just take a function call time). We

proposed efficient parameter optimization algorithm

to dynamically adjust the application level

parameters: the number of map tasks via finding

optimal split size based on dynamic resource capacity

(number of containers).

In the following sections of the paper, we

present background theory, discuss MapReduce

Hadoop configuration parameter tuning for

performance optimization, describe the proposed

optimization system and expected performance

improvement discussion and finally concludes the

proposed system.

2. Background Theory

This section describes the Apache Hadoop and

how clients request resources from Apache Hadoop

Yet Another Resource Negotiator (YARN) to execute

their applications.

2.1. Apache Hadoop

Hadoop is a framework for distributed data

storage and data processing. Distributed data storage

is provided by the HDFS (Hadoop Distributed File

System) service, and distributed processing is

provided by YARN. YARN is essentially a

distributed operating system that provides a baseline

of services for distributed applications. It can still

perform MapReduce framework and it also provides

a suitable framework to a variety of other distributed

applications like search, data streaming, in-memory

and real-time distributed data processing [3]. To take

advantage of data locality the program of

MapReduce application is also distributed across the

nodes, preferably on the same nodes where data

block resides.

Hadoop MapReduce framework divide the

input data into smaller chunks, referred as input splits

in Hadoop. These input splits and records are logical;

they don’t store or contain the actual data. They just

refer to the data which is stored as blocks in HDFS.

For each input split Hadoop creates one map task to

process records in that input split. That is how

parallelism is achieved in Hadoop framework. When

a MapReduce application is run, mappers start

producing intermediate output internally; lots of

processing is done by the Hadoop framework before

the reducers get their input. Once reducer has got its

respective portion of intermediate data from all the

mappers to create reduce task input and performs

user specified reduce function. The final reduce

output is written on HDFS.

2.2. Execution model of Apache Hadoop

YARN

The application execution in Yarn starts with a

client contacting Application Manager component of

the Resource Manager (RM) and requesting resource

for an Application Master (AM). Next, step 1: the

client notifies the RM that it wants to submit an

application. Step 2: The RM responds with an

ApplicationID and information about the capabilities

of the cluster that will aid the client in requesting

resources for AM. Next, step 3: the client responds

with a Application Submission Context and

Container Launch Context (CLC). [4] When the RM

receives the application submission context from a

client, it schedules an available container for the

Application Master (AM). Step 4: If a suitable

container is available, then RM communicates the

corresponding Node Manager (NM) that resides the

container and starts the AM and at first AM sends

registration request to the RM. The Container

represents an allocated resource partition with

configured size of such as memory and CPU on a

single node in the cluster and many containers can

exist on a single node [4].

When an AM starts up, step 5: the RM will

send information about the minimum and maximum

capabilities of the cluster in response to the

registration request of Application Master. YARN

allows applications to adapt (if possible) to the

current cluster environment and the AM need to

decide how to use the currently available resource

capabilities. If an application is small and container

resources are sufficient to complete the application,

the application runs locally on the node that run AM

of a given application. Otherwise, step 6: an AM

calculates the number and configuration of more

containers needed for the application, then requests a

certain number of containers by specifying the

amount of memory and virtual cores on the available

24

resources’ capabilities reported from the RM. Step 7:

the RM will respond, as best as possible based on

scheduling policies, to this request with container

resources that are assigned to the AM. The scheduler

distributes currently available resources by partially

satisfying incoming requests, as total of requested

resources is usually much greater than the total of

currently available resources. This action is repeated

periodically, on each heartbeat. Simultaneously

allocated containers form a wave. The size of

memory and the number of virtual cores per

container are set in configuration file by the user, and

are static throughout the application execution. They

affect application completion time resource

utilization significantly and we can improve the

performance of MapReduce applications by tuning

the corresponding performance impact parameters.

The growing importance of Apache Hadoop, the

severity of the impacts of parameter selection, along

with the limitation of resources, has led to vivid

interest in the research community [4]. When the

application finishes, the AM sends a finish message

to the RM and exits [4].

Figure 1. YARN Execution model with client

resource request

3. Related Works

Hadoop MapReduce performance

optimization is an interesting research area and

optimization opportunities are taken from the large

space of configuration parameters for the MapReduce

jobs. There are many previous works in order to find

a good setting of Hadoop configurations that

achieves optimized performance for a Hadoop

program running on a given cluster. H. Herodotou et

al. [9] proposed a cost-based optimization system of

MapReduce program to estimate the optimal

configuration setting by using three components:

profiler to collect detailed statistical information

online from MapReduce job, optimizer to search

optimal configuration, What-if-Engine based on

analytical models to predict the cost (i.e. phase level

execution time based on previously profiled

information for the same program) needed by the

optimizer. As per the experimental results of RFHOC

[6], this system [9] is ineffective because it cannot

detect the non-linear effect of parameters

(experimented parameter: io.sort.factor) leading to

suboptimal configuration and makes simple

assumption to estimate execution time per operation

(per-byte or per-record processing) to be constant

across different configurations. To do end of these

limitations, Z. Bei et al. [6] proposed RFHOC, an

automated performance tuning approach that adjusts

the Hadoop configuration parameters for an

application running on a given cluster to achieve

optimized performance. RFHOC constructs random

forest based models to accurately predict the

performance of Hadoop programs without making

any assumption and applies a genetic algorithm to

search the optimization space, yielding overall better

Hadoop performance. G. Liao et al. [10] developed

Gunther, a search based parameter tuning approach

that aggressively identifies parameter settings which

leads to near-optimal job execution times. The

experimental results showed that this approach can

obtain near-optimal performance within 30 trials

using six configuration parameters with specified

value range. However, Gunther needs to run the

target Hadoop program once for each iteration of the

genetic algorithm (GA), which is time-consuming for

the applications with large input data sets. In contrast,

RFHOC applies random forest based performance

models to predict performance for each iteration of

the GA (without executing the application), which is

much faster. M. Li et al. [2] proposed MRONLINE,

an online parameter tuning approach by using a gray-

box based hill climbing algorithm to efficiently

search a desirable configuration for each task of

specific application on task-level configuration

framework. The evaluation result showed that the

online tuning approach gains performance

improvement up to 30% compared to default setting

in YARN.

In summary, previously proposed methods

conducted performance optimization in various ways

on many task level Hadoop MapReduce

25

configurations (do not optimize on key job level

parameter considered in this system) with a

considerable amount of optimization overhead and

they do not consider resource availability for

effective cluster resource utilization. In this paper, we

focus on key job level parameter which affects

performance of the overall MapReduce job. In this

paper, we proposed an approach to efficiently

optimize the performance of application on YARN-

based Hadoop framework via calculated optimal split

size with nearly zero optimization overhead by

leveraging the cluster resource effectively. We can

gain further improvement for the existing Hadoop

MapReduce performance optimization system by

integrating the proposed approach with the

optimization systems that mainly focus on task level

configuration parameters.

4. Performance Optimization on YARN-

based MapReduce Hadoop framework

In this section, we describe parameter

classification and selection, the impacts of the

number of map tasks in MapReduce applications and

the corresponding configuration parameter, split size

that can govern the impact, the performance

optimization via proposed algorithm and present the

expected performance improvement by creating a

scenario.

4.1 Parameter Classification and Selection

We can classify the Hadoop configuration

parameter into task level parameters that affect the

performance of the task and application level

parameters that affect the performance of application.

In former class, we can change the different

parameters’ values for different task. Application

level parameters (such as input split size, the number

of map tasks, and the number of reduce tasks, etc.,)

are impossible to tune after the application has been

initialized. Therefore, application level parameters,

input split size, the number of map tasks is important

and selected for parameter optimization.

4.2 Issues of Selected Parameter on

MapReduce Performance

When a MapReduce job is run to process an

input data, Hadoop framework divide the input data

into independent smaller chunks, these chunks are

referred as input splits which are processed by the

map tasks in a parallel manner. Hadoop creates one

map task per input split, thus number of map tasks is

equal to the number of input splits. Furthermore, the

input split size and the application input data size of

the Hadoop MapReduce application control the total

number of Map tasks spawned by the Hadoop

framework [8]. In Hadoop, the default value of input

split size is equal to HDFS block size. In this case, it

is not suitable for different input data sizes that

usually run in MapReduce applications. For the

MapReduce application running with a large number

of short running Map tasks that each task takes only a

few seconds most time of the application will be

spent on setting up and scheduling tasks as process

time is very less. The aggregate pressure on the

scheduler and the cluster incurs in slow application

execution time on application performance.

Therefore, the proposed system optimizes the number

of map tasks via tuning split size based on the size of

input data by considering dynamic Hadoop cluster

resources.

4.3 Performance Optimization Approach

Dynamic Parameter Tuning

Optimization via Proposed
Algorithm

Optimal Split Size

 Suitable
Block Sizes

(Split Sizes) List

Application Test Run

Input Dataset,

Block Size

(Default)

Application Statistics

Collection and Analysis

Offline Parameter Tuning

 New Block Size

Input Data Size and

Available Resource

Capacities

Figure 2. Performance Optimization System

Architecture

In this paper, we propose performance

optimization system on YARN-based MapReduce

Hadoop framework. This system employs dynamic

parameter tuning and offline parameter tuning.

Dynamic parameter tuning find the optimal the

number of map tasks for a given application via

optimal split size by applying efficient parameter

optimization algorithm. The input data size from

hdfs, the dynamic available resources from RM and

suitable split size list produced from offline

parameter tuning are taken to the algorithm as input.

Whereas, offline parameter tuning is manually

performed on representative MapReduce applications

by using small dataset with various block sizes to

26

reduce the testing time because changing the

parameter block size is easy and simply. The overall

performance optimization system architecture is

shown in figure 2.

Table 1. Notation _meaning table

Notation Meaning

D input data

numContainer number of containers

that can run in parallel

total_numContainer total numContainer for

a running application

SS split size

SS_List suitable spilt sizes list

numSplit number of splits

numMap number of map tasks

for a given application

numWave number of waves

Before presenting the proposed algorithm, we

describe how to implement the input split size in

MapReduce framework. The MapReduce application

creates Input splits by employing InputFormat class.

Actually the input split size calculation for the input

file is in the FileInputFormat class which is the super

class for all the implementations of InputFormat.

FileInputFormat method computes splits size via

computeSplitSize method Math.max (minSize,

Math.min (maxSize, blockSize) (inorg.apache.

hadoop.mapreduce.lib.input.FileInputFormat class)

which return split size. The parameter minSize is set

via mapreduce.input.fileinputformat.split.minsize and

maxSize is set via mapreduce.input.fileinputformat.

split.maxsize, the splittable minimum chunk size and

maximum chunk size input data [8]. Default values

of them are 0(zero means no limit, thus split size is

HDFS block size). In our proposed system, the

computSplitSize method will be implemented by

using proposed parameter optimization algorithm that

computes optimal split size resulting in optimal

number of map tasks.

4.4 Efficient Parameter Optimization Algorithm

The proposed efficient parameter optimization

algorithm takes the size of input data from hdfs, input

data size from hdfs, the dynamic available resources

from RM and suitable split size list produced from

offline parameter tuning and return optimal split size

resulting in optimal number of map tasks leading to

performance optimization. In order to find the

optimal split size and derive number of map task for

running the application on a given input data the

proposed algorithm processes the following steps

considered for possible conditions of available

resources’ capacity on YARN-based Hadoop cluster.

Algorithm 1: Efficient Parameter

Optimization

Input: D; numContainer (it is based on

available cluster resource capacity for a given

time and application); SS_List, whereas those

split sizes are obtained from offline manual

tuning;

Output: optimal SS

1. Current SS=D / numContainer

2. if current SS ∈ SS_List

3. optimal SS=current SS

4. then return optimal SS

 //numMap=D/optimal SS or numContainer

5. else if current SS < smallest SS from

 SS_List

6. optimal SS=smallest SS

7. then return optimal SS

 //numMap=D/optimal SS

8. else

9. current numSplit =D/largest SS from

 SS_List

10. numWave =numSplit/numContainer

11. Total_numContainer = numWave *

 numSplit

12. optimal SS=D/total_numContainer

13. return optimal SS

 //numMap= D/optimal SS

14. end if

Step-1 (line 1-4: available resources’ capacity

fits application’s resource requirement) (formula 1:

Total time taken =number of wave * execution time

per map task). In this step, all map tasks are

concurrently run within a single map execution wave

and complete at the same time, thus the execution

time of application is a single optimal map execution

time due to optimized SS. Therefore, map task

execution time affects the application execution time,

it is extremely important to optimize the split size

that affects the map execution time and numMap.

Step 2 (line 5-7: available resources’ capacity

is larger than application’s resource requirement) All

map tasks from one application can be run in parallel

within a single execution wave and they finish at the

same time. In this case, we need to modify the SS

with suitable smallest SS from SS_list to reduce the

network traffic of reduce stage in copying multiple

intermediate map outputs resulting from many map

task executed on smaller split size.

Step 3 (line 9-13: available resources’ capacity

is smaller than application’s resources requirement)

In this step if last wave run small number of task, the

other available resource cannot fully utilize. In this

27

case, we need to adjust the number of map task via

optimal SS to effectively use the available resource

by means of performance optimization in step 3

leading to improve execution time and cluster

resource utilization. The execution time of

application can be predicted via formula 1.

4.5 Expected Performance Improvement

In parameter tuning for performance

optimization, increasing the input split size to get

more data to process results in creation of less map

tasks and reduce overhead. In this case, split size can

be increased in order to run the Map task for 1-3

minutes at least according to rule of thumb. However,

if available resource is higher than number of

mappers with increased split size, the cluster resource

cannot be used fully and the execution time of the

application can achieve sub-optimal solution only.

In this paper, we present how proposed system

can improve the execution time of MapReduce job

and resource utilization by creating a scenario: If an

application is run on YARN architecture with input

data of 5120 MB (2G), hdfs block size of 256MB

(take 120 seconds per split/task to execute) and 128

MB (take 80 seconds) and total numMap is 20 and

40, respectively (256MB and 128MB include in

SS_list). If the numContainer that can run in parallel

is 20, the proposed system can detect the optimal

numMap via optimal SS (256MB) because the

proposed algorithm can determine that the execution

time to complete all map tasks for the application

with the block size 256MB (that can run within 1

wave and execution time is 120s) is better than those

of 128MB (that can run two wave and application

execution time is about 2*80=160 s). If the cluster

has enough resource to run all map tasks of 20 or 40

simultaneously, the proposed system can detect the

optimal numMap via optimal SS (128MB) because

the execution time of all map tasks for the application

with 20 and 40 tasks is about 120s and 80s,

respectively. Therefore, the proposed system can

improve not only execution time but also cluster

resource utilization. In this case, if we cannot detect

the optimal split size based on input data and

available cluster resource, the system cannot achieve

optimal performance.

In the future, we will perform experimental

evaluation by running on multi-user YARN cluster

and compare the performance of proposed system

with the Hadoop default configuration.

5. Conclusion

Performance optimization for Hadoop

MapReduce applications is still an open issue in

research community. Performance of MapReduce

application can be improved without increasing the

hardware costs, by tuning key configuration

parameters. In this case, the major challenge lies in

quickly identifying the best settings for a particular

application on a given cluster with negligible

overhead. Therefore, this paper proposed the

performance optimization system on YARN-based

MapReduce Hadoop cluster to efficiently improve

the performance of MapReduce application by

proposed algorithm. The effective resource usage and

optimal SS due to the proposed algorithm ensures

faster completion time for applications with nearly

zero overhead for optimization. Further, the proposed

system does not keep track of application

performance, thus it will not incur the performance

monitoring overhead. In the future, we intend to

develop performance optimization method to include

both application level and task level parameter,

whereas optimization on task level parameters is

based on the SS of the current proposed system on

application level parameter.

References

[1] K. Kc, and V. W. Freeh, "Dynamically

Controlling Node-Level Parallelism in

Hadoop", 2015 IEEE 8th International

Conference on Cloud Computing, IEEE, New

York, NY, USA, 2015.

[2] M. Li, L. Zeng, S. Meng, J. Tan, L. Zhang, A.

R. Butt, and N. Fuller, “Mronline: Mapreduce

Online Performance Tuning”, Proc. of the

23rd International Symposium on High-

Performance Parallel and Distributed

Computing, ACM, 2014, pp. 165–176.

[3] M. Fudge, Introduction to Hadoop [Online]

Available:

http://mafudge.mysite.syr.edu/BigData/intro-

hadoop/ [Accessed: November-2018]

[4] A. C. Murthy, V. K. Vavilapalli, D. Eadline, J.

Niemiec, and J. Markham, Apache Hadoop

YARN : moving beyond MapReduce and batch

processing with Apache Hadoop 2, Addison-

Wesley, 2014.

[5] B. J. Mathiya,, and V. L. Desai, "Apache

Hadoop Yarn Parameter Configuration

Challenges and Optimization", 2015

International Conference on Soft-Computing

28

and Networks Security (ICSNS), Coimbatore,

India, February 25–27, 2015.

[6] Z. Bei, Z. Yu, H. Zhang, W. Xiong, L.

Eeckhout, C. Xu, and S. Feng, "RFHOC: A

Random-Forest Approach to Auto-Tuning

Hadoop's Configuration", IEEE Transactions

on Parallel and Distributed Systems,

Vancouver, BC, Canada, 2015.

[7] N. Yigitbasi, T. L. Willke, G. Liao, and D.

Epema, "Towards Machine Learning-Based

Auto-tuning of MapReduce", 2013 IEEE 21st

International Symposium on Modelling

Analysis and Simulation of Computer and

Telecommunication Systems, IEEE, San

Francisco, CA, USA, 2013.

[8] T. Revathi, K. Muneeswaran, and M. B. B.

Pepsi, Big Data Processing with Hadoop, IGI

Global, USA, August 24, 2018.

[9] H. Herodotou and S. Babu, “Profiling, What-if

Analysis, and Cost Based Optimization of

MapReduce Programs”, Proc. of the VLDB

Endowment, vol. 4, no. 11, Seattle,

Washington, 2011, pp. 1111–1122.

[10] G. Liao, K. Datta, and T. L. Willke, “Gunther:

Search-Based Auto-Tuning of MapReduce”,

Proc. of Euro-Par 2013 Parallel Processing,

Springer, Aachen, Germany, August 26-30,

2013, pp. 406–419.

29

