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Abstract 

Apache Hadoop exposes 180+ configuration 

parameters for all types of applications and clusters, 

10-20% of which has a great impact on performance 

and efficiency of the execution. The optimal 

configuration settings for one application may not be 

suitable for another one leading to poor system 

resources utilization and long application completion 

time. Further, optimizing many parameters is a time 

consuming and a challenging job because 

configuration parameters and search space are huge, 

and users require good knowledge of Hadoop 

framework. The issue is that the user should adjust at 

least the important parameters, e.g. the number of 

map tasks that can run in parallel for a given 

application. This paper introduces the parameter 

optimization algorithm to the key application level 

parameter based on input data size and dynamic 

resource capabilities at any given time for a given 

application to improve execution time and resource 

utilization with nearly zero optimization overhead. 

1. Introduction 

In this Big Data world, huge data storage and 

faster processing is a big challenge because many 

companies and organizations become interested in 

processing and analyzing big data to extract valuable 

information from big data. Hadoop is a desirable 

solution to this challenge. 

The Apache Hadoop framework has become a 

popular, reliable, and scalable open-source 

framework for storing and processing big data in a 

distributed fashion on large clusters of low cost 

commodity hardware by using HDFS and 

MapReduce programming framework, respectively. 

HDFS is highly fault-tolerant through replication 

management like multiple copies on block of data on 

different node and scalability and is designed to be 

deployed on low cost hardware [5]. 

As Hadoop allows for the distributed 

processing of large datasets across clusters of low 

cost commodity machines with generality, 

scalability, high availability and fast processing, 

MapReduce has been widely accepted as the most 

popular distributed processing framework for data-

intensive applications in different contexts like click-

log mining, web crawling, bioinformatics processing 

and machine learning, image processing, and data 

analysis, etc. A typical characteristic of these 

applications is that they run repeatedly with different 

input data sets [4]. YARN is an improved 

architecture of Hadoop and separates resource 

management from application logic [1]. The 

generalization of resource management makes it 

easier to deploy not only MapReduce applications, 

but also other applications such as Spark and Tez [1]. 

Despite the improvement in architecture of Hadoop 

in YARN and its wide adoption, performance 

optimization for MapReduce applications remains 

challenge because  parameter tuning to optimize the 

performance is largely manual and is done via 

configuration parameters. 

Hadoop exposes 180+ parameters providing 

users the flexibility to customize them according to 

their need. Some parameters have significant impact 

on MapReduce performance and manual tuning is 

time consuming and difficult because of the large 

parameter space and the complex interactions among 

the parameters [7]. Therefore, automatically tuning 

the configuration parameters for a given MapReduce 

Hadoop application on a given cluster to achieve 

optimized performance is highly desirable [6]. There 

are many recent research works for performance 

optimization of MapReduce Applications by using 

auto-tuning approaches: a cost-based approach, 

popular and flexible Machine learning models and a 

search-based [9, 6, 10]. The auto-tuning approaches  

(primarily working with task level parameters) are 

complex and require good enough tuning time to find 

optimal settings with a certain amount of overhead 

because they usually consider many task (map and 

reduce) level parameters with their respective 

possible values or range. Therefore, the major 

challenge is to quickly identify the optimal parameter 

configuration settings for a particular application on a 

given cluster that effectively utilizes system 

resources, ensures faster completion of applications. 

23

mailto:Thanthanhtay@ucsy.edu.mm
mailto:Thanthanhtay@ucsy.edu.mm
mailto:sabaiphyu72@gmail.com
mailto:sabaiphyu72@gmail.com


To this end, it is desirable to select a small number of 

parameters that significantly affect the performance 

of MapReduce application. [1]. 

In this paper, we propose efficient 

performance optimization approach on Yarn based 

Hadoop in order to improve cluster resource 

utilization leading to faster completion time of 

MapReduce. We focuses on application level 

parameters that make impact the cluster resource 

utilization and overall application execution time on 

map stage with nearly zero overhead of optimization 

approach (just take a function call time). We 

proposed efficient parameter optimization algorithm 

to dynamically adjust the application level 

parameters: the number of map tasks via finding 

optimal split size based on dynamic resource capacity 

(number of containers). 

In the following sections of the paper, we 

present background theory, discuss MapReduce 

Hadoop configuration parameter tuning for 

performance optimization, describe the proposed 

optimization system and expected performance 

improvement discussion and finally concludes the 

proposed system. 

2. Background Theory 

This section describes the Apache Hadoop and 

how clients request resources from Apache Hadoop 

Yet Another Resource Negotiator (YARN) to execute 

their applications. 

2.1. Apache Hadoop 

Hadoop is a framework for distributed data 

storage and data processing. Distributed data storage 

is provided by the HDFS (Hadoop Distributed File 

System) service, and distributed processing is 

provided by YARN. YARN is essentially a 

distributed operating system that provides a baseline 

of services for distributed applications. It can still 

perform MapReduce framework and it also provides 

a suitable framework to a variety of other distributed 

applications like search, data streaming, in-memory 

and real-time distributed data processing [3]. To take 

advantage of data locality the program of 

MapReduce application is also distributed across the 

nodes, preferably on the same nodes where data 

block resides. 

Hadoop MapReduce framework divide the 

input data into smaller chunks, referred as input splits 

in Hadoop. These input splits and records are logical; 

they don’t store or contain the actual data. They just 

refer to the data which is stored as blocks in HDFS. 

For each input split Hadoop creates one map task to 

process records in that input split. That is how 

parallelism is achieved in Hadoop framework. When 

a MapReduce application is run, mappers start 

producing intermediate output internally; lots of 

processing is done by the Hadoop framework before 

the reducers get their input. Once reducer has got its 

respective portion of intermediate data from all the 

mappers to create reduce task input and performs 

user specified reduce function. The final reduce 

output is written on HDFS.  

2.2. Execution model of Apache Hadoop 

YARN 

The application execution in Yarn starts with a 

client contacting Application Manager component of 

the Resource Manager (RM) and requesting resource 

for an Application Master (AM). Next, step 1: the 

client notifies the RM that it wants to submit an 

application. Step 2: The RM responds with an 

ApplicationID and information about the capabilities 

of the cluster that will aid the client in requesting 

resources for AM. Next, step 3: the client responds 

with a Application Submission Context and 

Container Launch Context (CLC). [4] When the RM 

receives the application submission context from a 

client, it schedules an available container for the 

Application Master (AM). Step 4: If a suitable 

container is available, then RM communicates the 

corresponding Node Manager (NM) that resides the 

container and starts the AM and at first AM sends 

registration request to the RM. The Container 

represents an allocated resource partition with 

configured size of such as memory and CPU on a 

single node in the cluster and many containers can 

exist on a single node [4].  

When an AM starts up, step 5: the RM will 

send information about the minimum and maximum 

capabilities of the cluster in response to the 

registration request of Application Master. YARN 

allows applications to adapt (if possible) to the 

current cluster environment and the AM need to 

decide how to use the currently available resource 

capabilities. If an application is small and container 

resources are sufficient to complete the application, 

the application runs locally on the node that run AM 

of a given application. Otherwise, step 6: an AM 

calculates the number and configuration of more 

containers needed for the application, then requests a 

certain number of containers by specifying the 

amount of memory and virtual cores on the available 
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resources’ capabilities reported from the RM. Step 7: 

the RM will respond, as best as possible based on 

scheduling policies, to this request with container 

resources that are assigned to the AM. The scheduler 

distributes currently available resources by partially 

satisfying incoming requests, as total of requested 

resources is usually much greater than the total of 

currently available resources. This action is repeated 

periodically, on each heartbeat. Simultaneously 

allocated containers form a wave. The size of 

memory and the number of virtual cores per 

container are set in configuration file by the user, and 

are static throughout the application execution. They 

affect application completion time resource 

utilization significantly and we can improve the 

performance of MapReduce applications by tuning 

the corresponding performance impact parameters. 

The growing importance of Apache Hadoop, the 

severity of the impacts of parameter selection, along 

with the limitation of resources, has led to vivid 

interest in the research community [4]. When the 

application finishes, the AM sends a finish message 

to the RM and exits [4].  

 

 

 

Figure 1.  YARN Execution model with client 

resource request 

3. Related Works 

Hadoop MapReduce performance 

optimization is an interesting research area and 

optimization opportunities are taken from the large 

space of configuration parameters for the MapReduce 

jobs. There are many previous works in order to find 

a good setting of Hadoop configurations that 

achieves optimized performance for a Hadoop 

program running on a given cluster. H. Herodotou et 

al. [9] proposed a cost-based optimization system of 

MapReduce program to estimate the optimal 

configuration setting by using three components: 

profiler to collect detailed statistical information 

online from MapReduce job, optimizer to search 

optimal configuration, What-if-Engine based on 

analytical models to predict the cost (i.e. phase level 

execution time based on previously profiled 

information for the same program) needed by the 

optimizer. As per the experimental results of RFHOC 

[6], this system [9] is ineffective because it cannot 

detect the non-linear effect of parameters 

(experimented parameter: io.sort.factor) leading to 

suboptimal configuration and makes simple 

assumption to estimate execution time per operation 

(per-byte or per-record processing) to be constant 

across different configurations. To do end of these 

limitations, Z. Bei et al. [6] proposed RFHOC, an 

automated performance tuning approach that adjusts 

the Hadoop configuration parameters for an 

application running on a given cluster to achieve 

optimized performance. RFHOC constructs random 

forest based models to accurately predict the 

performance of Hadoop programs without making 

any assumption and applies a genetic algorithm to 

search the optimization space, yielding overall better 

Hadoop performance. G. Liao et al. [10] developed 

Gunther, a search based parameter tuning approach 

that aggressively identifies parameter settings which 

leads to near-optimal job execution times. The 

experimental results showed that this approach can 

obtain near-optimal performance within 30 trials 

using six configuration parameters with specified 

value range. However, Gunther needs to run the 

target Hadoop program once for each iteration of the 

genetic algorithm (GA), which is time-consuming for 

the applications with large input data sets. In contrast, 

RFHOC applies random forest based performance 

models to predict performance for each iteration of 

the GA (without executing the application), which is 

much faster. M. Li et al. [2] proposed MRONLINE, 

an online parameter tuning approach by using a gray-

box based hill climbing algorithm to efficiently 

search a desirable configuration for each task of 

specific application on task-level configuration 

framework. The evaluation result showed that the 

online tuning approach gains performance 

improvement up to 30% compared to default setting 

in YARN.  

In summary, previously proposed methods 

conducted performance optimization in various ways 

on many task level Hadoop MapReduce 
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configurations (do not optimize on key job level 

parameter considered in this system) with a 

considerable amount of optimization overhead and 

they do not consider resource availability for 

effective cluster resource utilization. In this paper, we 

focus on key job level parameter which affects 

performance of the overall MapReduce job. In this 

paper, we proposed an approach to efficiently 

optimize the performance of application on YARN-

based Hadoop framework via calculated optimal split 

size with nearly zero optimization overhead by 

leveraging the cluster resource effectively. We can 

gain further improvement for the existing Hadoop 

MapReduce performance optimization system by 

integrating the proposed approach with the 

optimization systems that mainly focus on task level 

configuration parameters. 

4. Performance Optimization on YARN-

based MapReduce Hadoop framework 

In this section, we describe parameter 

classification and selection, the impacts of the 

number of map tasks in MapReduce applications and 

the corresponding configuration parameter, split size 

that can govern the impact, the performance 

optimization via proposed algorithm and present the 

expected performance improvement by creating a 

scenario.  

4.1 Parameter Classification and Selection 

We can classify the Hadoop configuration 

parameter into task level parameters that affect the 

performance of the task and application level 

parameters that affect the performance of application. 

In former class, we can change the different 

parameters’ values for different task. Application 

level parameters (such as input split size, the number 

of map tasks, and the number of reduce tasks, etc.,) 

are impossible to tune after the application has been 

initialized. Therefore, application level parameters, 

input split size, the number of map tasks is important 

and selected for parameter optimization. 

4.2 Issues of Selected Parameter on 

MapReduce Performance 

When a MapReduce job is run to process an 

input data, Hadoop framework divide the input data 

into independent smaller chunks, these chunks are 

referred as input splits which are processed by the 

map tasks in a parallel manner. Hadoop creates one 

map task per input split, thus number of map tasks is 

equal to the number of input splits. Furthermore, the 

input split size and the application input data size of 

the Hadoop MapReduce application control the total 

number of Map tasks spawned by the Hadoop 

framework [8]. In Hadoop, the default value of input 

split size is equal to HDFS block size. In this case, it 

is not suitable for different input data sizes that 

usually run in MapReduce applications. For the 

MapReduce application running with a large number 

of short running Map tasks that each task takes only a 

few seconds most time of the application will be 

spent on setting up and scheduling tasks as process 

time is very less. The aggregate pressure on the 

scheduler and the cluster incurs in slow application 

execution time on application performance. 

Therefore, the proposed system optimizes the number 

of map tasks via tuning split size based on the size of 

input data by considering dynamic Hadoop cluster 

resources.  

4.3 Performance Optimization Approach 

Dynamic Parameter Tuning

Optimization via Proposed 
Algorithm

Optimal Split Size

  Suitable 
Block Sizes 

(Split Sizes) List

Application Test Run 

Input Dataset, 

Block Size 

(Default)

Application Statistics 

Collection and Analysis

Offline Parameter Tuning

     New Block Size

Input Data Size and 

Available  Resource 

Capacities

 
Figure 2. Performance Optimization System 

Architecture 

In this paper, we propose performance 

optimization system on YARN-based MapReduce 

Hadoop framework. This system employs dynamic 

parameter tuning and offline parameter tuning. 

Dynamic parameter tuning find the optimal the 

number of map tasks for a given application via 

optimal split size by applying efficient parameter 

optimization algorithm. The input data size from 

hdfs, the dynamic available resources from RM and 

suitable split size list produced from offline 

parameter tuning are taken to the algorithm as input. 

Whereas, offline parameter tuning is manually 

performed on representative MapReduce applications 

by using small dataset with various block sizes to 
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reduce the testing time because changing the 

parameter block size  is easy and simply. The overall 

performance optimization system architecture is 

shown in figure 2. 

Table 1. Notation _meaning table 

Notation Meaning 

D input data 

numContainer number of containers 

that can run in parallel 

total_numContainer total numContainer for 

a running application 

SS split size 

SS_List suitable spilt sizes list 

numSplit number of splits 

numMap number of map tasks 

for a given application 

numWave number of waves 

 

Before presenting the proposed algorithm, we 

describe how to implement the input split size in 

MapReduce framework. The MapReduce application 

creates Input splits by employing InputFormat class. 

Actually the input split size calculation for the input 

file is in the FileInputFormat class which is the super 

class for all the implementations of InputFormat. 

FileInputFormat method computes splits size via 

computeSplitSize method Math.max (minSize, 

Math.min (maxSize, blockSize) (inorg.apache. 

hadoop.mapreduce.lib.input.FileInputFormat class) 

which return split size. The parameter minSize is set 

via mapreduce.input.fileinputformat.split.minsize and 

maxSize is set via mapreduce.input.fileinputformat. 

split.maxsize, the splittable minimum chunk size and 

maximum chunk size input data [8]. Default values 

of them are 0(zero means no limit, thus split size is 

HDFS block size). In our proposed system, the 

computSplitSize method will be implemented by 

using proposed parameter optimization algorithm that 

computes optimal split size resulting in optimal 

number of map tasks. 

4.4 Efficient Parameter Optimization Algorithm 

The proposed efficient parameter optimization 

algorithm takes the size of input data from hdfs, input 

data size from hdfs, the dynamic available resources 

from RM and suitable split size list produced from 

offline parameter tuning and return optimal split size 

resulting in optimal number of map tasks leading to 

performance optimization. In order to find the 

optimal split size and derive number of map task for 

running the application on a given input data the 

proposed algorithm processes the following steps 

considered for possible conditions of available 

resources’ capacity on YARN-based Hadoop cluster. 

 

Algorithm 1: Efficient Parameter 

Optimization 

Input:  D; numContainer (it is based on 

available cluster resource capacity for a given 

time and application); SS_List, whereas those 

split sizes are obtained from offline manual 

tuning;  

Output:  optimal SS  

1. Current SS=D / numContainer 

2. if  current SS ∈ SS_List 

3.     optimal SS=current SS 

4.     then return optimal SS  

 //numMap=D/optimal SS or numContainer 

 

5.      else if current SS < smallest SS from 

                                     SS_List   

6.            optimal SS=smallest SS   

7.            then  return optimal SS 

           //numMap=D/optimal SS 

8.           else  

9.             current numSplit =D/largest SS from  

            SS_List   

10.             numWave =numSplit/numContainer  

11.             Total_numContainer = numWave *  

                                                  numSplit 

12.             optimal SS=D/total_numContainer 

13.             return optimal SS 

            //numMap= D/optimal SS 

14. end if 

                                                                                         

Step-1 (line 1-4: available resources’ capacity 

fits application’s resource requirement) (formula 1: 

Total time taken =number of wave * execution time 

per map task). In this step, all map tasks are 

concurrently run within a single map execution wave 

and complete at the same time, thus the execution 

time of application is a single optimal map execution 

time due to optimized SS. Therefore, map task 

execution time affects the application execution time, 

it is extremely important to optimize the split size 

that affects the map execution time and numMap. 

Step 2 (line 5-7: available resources’ capacity 

is larger than application’s resource requirement) All 

map tasks from one application can be run in parallel 

within a single execution wave and they finish at the 

same time. In this case, we need to modify the SS 

with suitable smallest SS from SS_list  to reduce the 

network traffic of reduce stage in copying multiple 

intermediate map outputs resulting from many map 

task executed on smaller split size. 

Step 3 (line 9-13: available resources’ capacity 

is smaller than application’s resources requirement) 

In this step if last wave run small number of task, the 

other available resource cannot fully utilize. In this 
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case, we need to adjust the number of map task via 

optimal SS to effectively use the available resource 

by means of performance optimization in step 3 

leading to improve execution time and cluster 

resource utilization. The execution time of 

application can be predicted via formula 1. 

4.5 Expected Performance Improvement  

In parameter tuning for performance 

optimization, increasing the input split size to get 

more data to process results in creation of less map 

tasks and reduce overhead. In this case, split size can 

be increased in order to run the Map task for 1-3 

minutes at least according to rule of thumb. However, 

if available resource is higher than number of 

mappers with increased split size, the cluster resource 

cannot be used fully and the execution time of the 

application can achieve sub-optimal solution only.  

In this paper, we present how proposed system 

can improve the execution time of MapReduce job 

and resource utilization by creating a scenario: If an 

application is run on YARN architecture with input 

data of 5120 MB (2G), hdfs block size of 256MB 

(take 120 seconds per split/task to execute) and 128 

MB (take 80 seconds) and total numMap is 20 and 

40, respectively (256MB and 128MB include in 

SS_list). If the numContainer that can run in parallel 

is 20, the proposed system can detect the optimal 

numMap via optimal SS (256MB) because the 

proposed algorithm can determine that the execution 

time to complete all map tasks for the application 

with the block size 256MB (that can run within 1 

wave and execution time is 120s) is better than those 

of 128MB (that can run two wave and application 

execution time is about 2*80=160 s). If the cluster 

has enough resource to run all map tasks of 20 or 40 

simultaneously, the proposed system can detect the 

optimal numMap via optimal SS (128MB) because 

the execution time of all map tasks for the application 

with 20 and 40 tasks is about 120s and 80s, 

respectively. Therefore, the proposed system can 

improve not only execution time but also cluster 

resource utilization. In this case, if we cannot detect 

the optimal split size based on input data and 

available cluster resource, the system cannot achieve 

optimal performance. 

In the future, we will perform experimental 

evaluation by running on multi-user YARN cluster 

and compare the performance of proposed system 

with the Hadoop default configuration. 

 

5. Conclusion 

Performance optimization for Hadoop 

MapReduce applications is still an open issue in 

research community. Performance of MapReduce 

application can be improved without increasing the 

hardware costs, by tuning key configuration 

parameters. In this case, the major challenge lies in 

quickly identifying the best settings for a particular 

application on a given cluster with negligible 

overhead. Therefore, this paper proposed the 

performance optimization system on YARN-based 

MapReduce Hadoop cluster to efficiently improve 

the performance of MapReduce application by 

proposed algorithm. The effective resource usage and 

optimal SS due to the proposed algorithm ensures 

faster completion time for applications with nearly 

zero overhead for optimization. Further, the proposed 

system does not keep track of application 

performance, thus it will not incur the performance 

monitoring overhead. In the future, we intend to 

develop performance optimization method to include 

both application level and task level parameter, 

whereas optimization on task level parameters is 

based on the SS of the current proposed system on 

application level parameter. 
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